A new perspective to null linear discriminant analysis method and its fast implementation using random matrix multiplication with scatter matrices
نویسندگان
چکیده
Null linear discriminant analysis (LDA) method is a popular dimensionality reduction method for solving small sample size problem. The implementation of null LDA method is, however, computationally very expensive. In this paper, we theoretically derive the null LDA method from a different perspective and present a computationally efficient implementation of this method. Eigenvalue decomposition (EVD) of Sþ T SB (where SB is the between-class scatter matrix and S þ T is the pseudoinverse of the total scatter matrix ST) is shown here to be a sufficient condition for the null LDA method. As EVD of Sþ T SBis computationally expensive, we show that the utilization of random matrix together with Sþ T SB is also a sufficient condition for null LDA method. This condition is used here to derive a computationally fast implementation of the null LDA method. We show that the computational complexity of the proposed implementation is significantly lower than the other implementations of the null LDA method reported in the literature. This result is also confirmed by conducting classification experiments on several datasets. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
A theoretical contribution to the fast implementation of null linear discriminant analysis method using random matrix multiplication with scatter matrices
The null linear discriminant analysis method is a competitive approach for dimensionality reduction. The implementation of this method, however, is computationally expensive. Recently, a fast implementation of null linear discriminant analysis method using random matrix multiplication with scatter matrices was proposed. However, if the random matrix is chosen arbitrarily, the orientation matrix...
متن کاملA Multi Linear Discriminant Analysis Method Using a Subtraction Criteria
Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...
متن کاملتحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
متن کاملRobust tests for the common principal components model
In multivariate analysis we often deal with situations involving several populations, such as discriminant analysis, where the assumption of equality of scatter matrices is usually assumed. Yet sometimes, this assumption is not adequate but problems related to an excessive number of parameters will arise if we estimate the scatter matrices separately for each population. In many practical situa...
متن کاملNonparametric discriminant analysis for face recognition Citation
In this paper, we develop a new framework for face recognition based on nonparametric discriminant analysis (NDA) and multiclassifier integration. Traditional LDA-based methods suffer a fundamental limitation originating from the parametric nature of scatter matrices, which are based on the Gaussian distribution assumption. The performance of these methods notably degrades when the actual distr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012